Honeycomb lattice polygons and walks as a test of series analysis techniques
نویسنده
چکیده
We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.
منابع مشابه
Self-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کاملS ep 2 00 4 Self - avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کاملPolygons and the Lace Expansion
We give an introduction to the lace expansion for self-avoiding walks, with emphasis on self-avoiding polygons, and with a focus on combinatorial rather than analytical aspects. We derive the lace expansion for self-avoiding walks, and show that this is equivalent to taking the reciprocal of the self-avoiding walk generating function. We list some of the rigorous results for self-avoiding walks...
متن کاملExact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice.
We derive the nested Bethe Ansatz solution of the fully packed O(n) loop model on the honeycomb lattice. From this solution we derive the bulk free energy per site along with the central charge and geometric scaling dimensions describing the critical behaviour. In the n = 0 limit we obtain the exact compact exponents γ = 1 and ν = 1/2 for Hamiltonian walks, along with the exact value κ2 = 3 √ 3...
متن کاملCanonical Monte Carlo determination of the connective constant of self-avoiding walks
We define a statistic an(w), the size of the atmosphere of a self-avoiding walk, w, of length n, with the property that 〈an(w)〉 → μ as n → ∞, where μ is the growth constant of lattice self-avoiding walks. Both μ and the entropic exponent γ may be estimated to high precision from 〈a(w)〉 using canonical Monte Carlo simulations of self-avoiding walks. Previous Monte Carlo measurements of μ and γ h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005